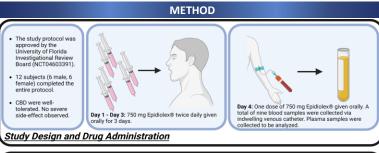
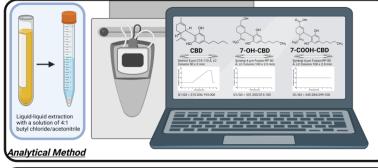


An analysis of the pharmacokinetic variability of oral cannabidiol and its major metabolites in healthy volunteers

Qingchen Zhang MS¹, Philp W. Melchert PharmD¹, Rodrigo Cristofoletti PhD², and John S. Markowitz PharmD¹

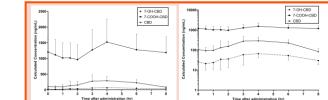
¹Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA. ²Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, , FL, USA.


BACKGROUND


Cannabidiol (CBD) is a widely utilized nonpsychoactive cannabinoid available as an OTC supplement, a component of medical cannabis, and a prescriptive treatment of childhood epilepsies¹¹. Epidoloex* CBD solution is the first FDA-approved therapeutic derived from cannabis indicated for the treatment of selzures associated with Lennox-Gastaut syndrome or Dravet syndrome. Additional pharmacological activity has been attributed to CBD through in *vitro* research and clinical use, including anti-inflammatory and anti-oxidative effects¹²¹. In humans, 7-OH-CBD has been identified as the major active metabolite possessing similar pharmacological activity to the parent compound. ¹²¹ Additionally, 7-COOH-CBD is a major inactive metabolite formed from 7-OH-CBD, which attains concentrations exceeding those of the parent compound after oral administration¹³¹.

parent composition and a common statistical of the conversion of 7-C04-C19 and CYP2C9, while the enzyme(s) responsible for the conversion of 7-OH-CBD to 7-C00H-CBD remains unidentified ^[4] (Figure 1). Recent clinical research has revealed significant variability in the pharmacokinetics (PK) of CBD ^[5]. However, the underlying factors contributing this variability, particularly after longterm CBD administration, remain unclear.

Additionally, there is a dearth of human studies investigating the PK of CBD metabolism in 7-OH-CBD and 7-COOH-CBD during multiple and high oral dosages of CBD administration. To address this void, a preliminary analysis was conducted of the PK of CBD during a multiple-oral-dose administration and its biotransformation. We were able to further analyze blood samples collected from healthy subjects (n=12) who participated in a previously conducted CBD drug interaction study⁽⁶⁾.

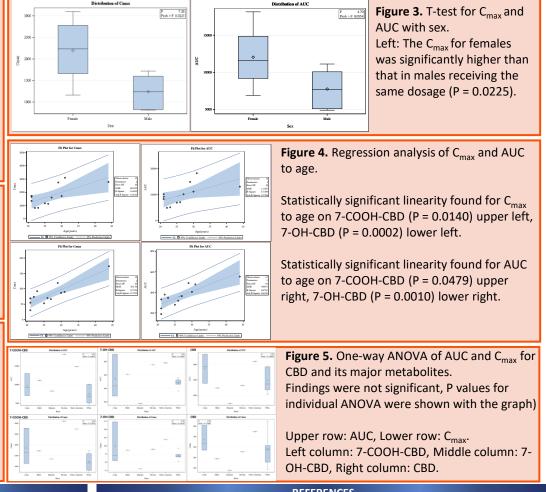


• Statistical Analysis were performed by SAS 9.

Statistical Analysis

- Non-compartmental analysis was applied to calculate peak plasma concentration (Cmax) and area under the curve (AUC) for CBD, 7-OH-CBD and 7-COOH-CBD.
- Patients' demographic data were used for correlation analysis with the following covariant: Race, Age, Sex, Height, Weight, and BMI.

Figure 2. Plasma concentration vs time plot of CBD, 7-OH-CBD, and 7-COOH-CBD after the last dose of


CBD. 12 subjects. Mean with SD.

Left: linear scale.

Right: logarithmic scale.

Rare		Age (years)	Sex	Weight (Kg) Height (c	m)	вмі	Table 1.
Mestiza		31	Female		13 1	160	20.7	Demographic data
Black		30	Male	60	3 1	161	23.3	for test subjects.
White		27	Male	79	2 1	170	27.4	
Asian		44	Female	51	.6 1	157	20.9	
White		23	Male	78	5 18	5.3	22.9	
White		25	Female		99 17	4.5	19.4	
White		22	Male		0 18	0.9	27.5	
Asian		21	Female	66	6.9 155.6		27.6	
Hispanic		21	Male	54	2 171.3		18.5	
Native American		29	Female	53	.1 15	4.1	22.4	
Asian		26	Male	87		183	26	
White		21	Female	56		99.2	19.9	
	_					_		
COOH-CBD								Table 2. PK analysis
ariable	Mean	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean	Minimum	Ν	Maximum	Table 2. PK analysis
max (hr)	4.33	1.50	3.38	5.28	1.00		6.00	for CBD, 7-OH-CBD,
	717.33	769.22	1228.59	2206.07	813.00		3100.00	
UC g/mL*hr) 9	888.42	3961.47	7371.42	12405.42	4890.00		18143.00	and 7-COOH-CBD.
() mi 2 mi)								
7-OH-CBD								
ariable M	Mean	Std Dev	Lower 95%	Upper 95%	Minimum	N	Aaximum	
max (hr)	4.25	1.42	CL for Mean 3.35	CL for Mean 5.15	2.00		6.00	
max (ng/mL)	81.35	36.64	58.07	104.63	30.00		173.00	
UC	364.70	105.59	297.61	431.79	188.10		554.20	
g/mL*hr)								
CBD								
ariable	Mean	Std Dev	Lower 95%	Upper 95%	Minimum	N	Aaximum	
			CL for Mean	CL for Mean				
max (hr) max (ng/mL)	4.08 389.17	1.62	3.05	5.11 486.52	1.00		6.00 648.00	
uc .	542.19	488.04	1232.10	1852.28	737.30		2331.00	
g/mL*hr)	342.19	488.04	1232.10	1852.28	737.30		2331.00	
CONCLUSION								

SELECT RESULTS

CONCLUSION

- A statistically significant difference in 7-COOH-CBD C_{max} was found between males and females (P = 0.0225). There was a linear relationship between C_{max} and age as well as AUC and age for both metabolites (7-OH-CBD and
- 7-COOH-CBD).
- PK differences based on race/ethnicity could not be evaluated due to the limited number of subjects
- Further modeling analysis is required to distinguish drug distribution and metabolic parameters.
 - Additional population-based PK analysis is planned to help identify the contribution of variability.

REFERENCES

Landmark (J., Brandl U. Pharmacology and drug interactions of carnabinoids. Epileptic Disord 2020; 22(51): 16-22. doi:10.1684/epid.2019.1123. Beers II. et al. Cytochrome 9456-Catalyzed Metabolism of Carnabidiol to the Active Metabolite 7-Hydroxy-Carnabidol. Drug Metab Dispos 2021; 49(10): 882–891. doi:10.1124/dmd.120.000350.

They is the A plane is plane in the state of the plane in the state of the plane is the plane is

ACKNOWLEDGEMENTS

This study was made possible by a grant from the State of Florida Consortium for Medical Marijuana Clinical Outcomes Research Epidiolex^{*} and Epidiolex^{*} Placebo were generously donated by Greenwich Biosciences Inc.