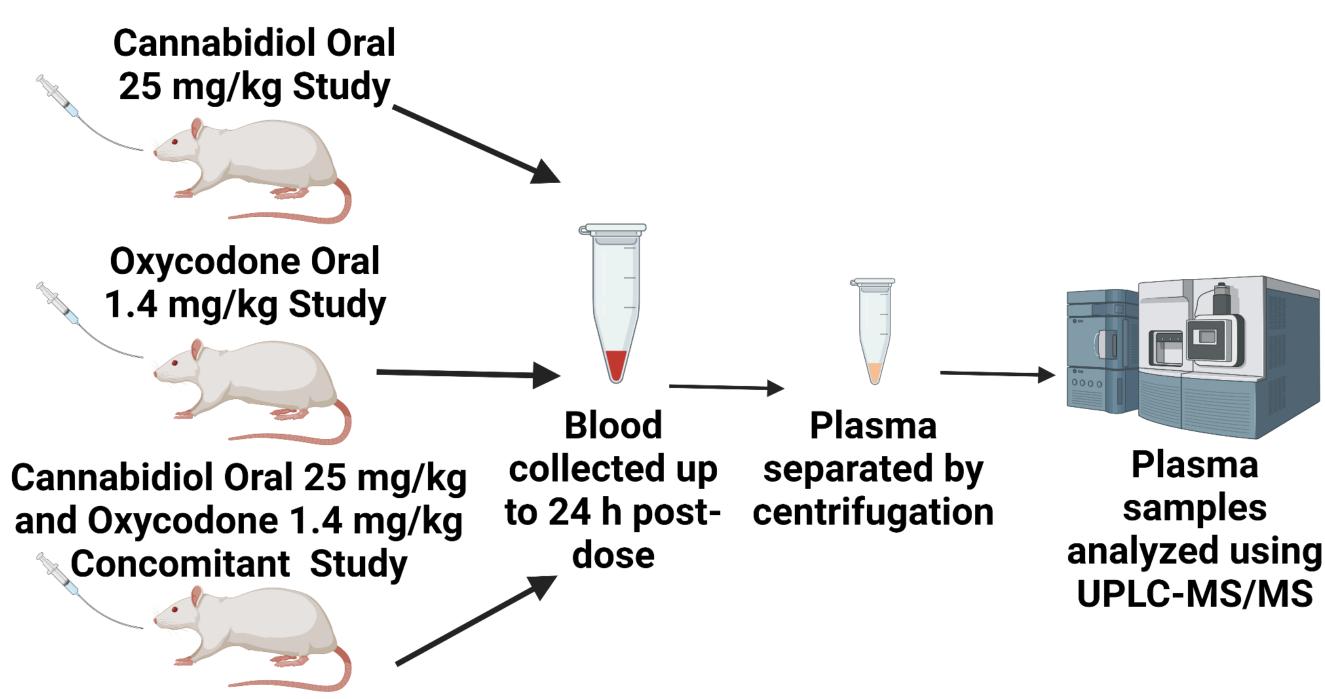
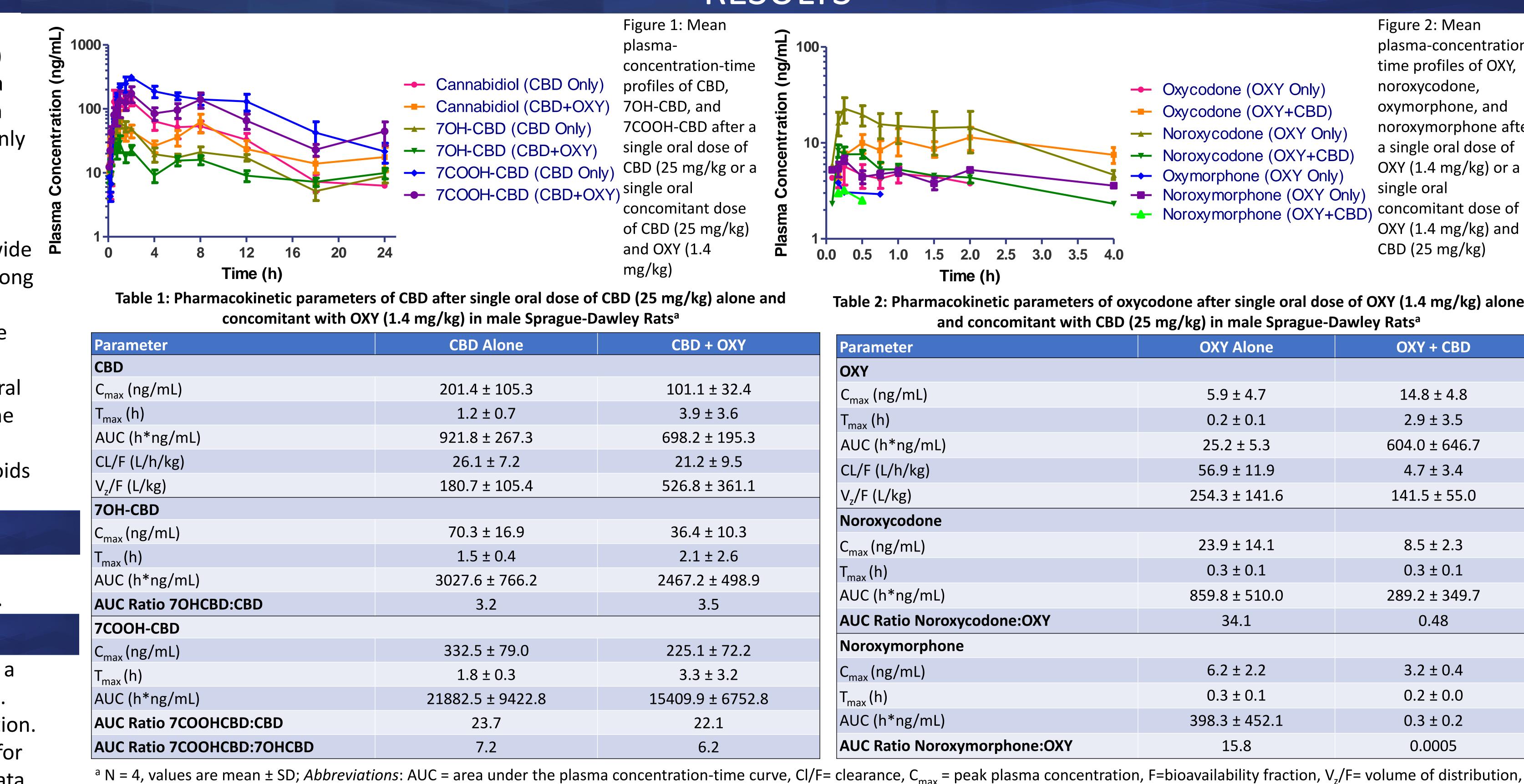
Pharmacokinetic Interactions of Cannabidiol and Oxycodone after oral administration in Rats A.S. Senetra^{1,2}, M.A. Kuntz^{1,2}, S.R.R. Kanumuri^{1,2}, Y. Chiang^{1,2}, A.C. Brice-Tutt⁴, N.P. Murphy⁴, A.W. Bruijnzeel⁵, M. Febo⁵, B. Setlow⁵, J.K. Neubert^{4,6}, C.R. McCurdy^{1,2,3}, A. Sharma^{1,2}

¹Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA, ²Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA, ³Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA, ⁴Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL, USA, ⁵Department of Psychiatry, College of Medicine, Gainesville, FL, USA, ⁶Department of Neuroscience, College of Medicine, Gainesville, FL, USA

INTRODUCTION


Cannabinoids and opioids share many pharmacologic properties and may act synergistically¹. Cannabidiol (CBD) exhibits analgesic and anti-inflammatory properties, but a major concern is its potential to interact with prescription drugs, specifically, opioids². Oxycodone (OXY) is a commonly prescribed opioid used to treat moderate to severe pain. Recent studies show patients using both CBD and OXY concomitantly report greater analgesia³. Cannabinoid consumption has been shown to cause impairment of a wide range of cognitive functions in a dose-related manner⁶, along with exhibiting adverse effects in the cardiovascular, respiratory, neural, and psychological systems⁷. Due to the depressant effects of both CBD and opioids⁴, coadministration of these substances can suppress the central nervous system to dangerous levels, as well as increase the risk of opioid use disorder⁵. To date, there have been no studies to assess the pharmacokinetic interactions of opioids and CBD.


OBJECTIVE

This study was performed to investigate the potential interactions of CBD and OXY in male Sprague-Dawley rats.

METHODS

A single oral dose of CBD (25 mg/kg), OXY (1.4 mg/kg), or a combination of both was administered to male rats (N=4). Blood samples were collected up to 24 h post administration. The TargetLynx[™] application of MassLynx[™] 4.2 was used for data processing and quantification of the UPLC-MS/MS data (Waters, Milford, MA, USA). Phoenix Version 6.4 (Certara, Princeton, NJ, USA) was used for the non-compartmental analysis. Graphpad Prism Version 8 (GraphPad Software, San Diego, CA, USA) was used to generate figures.

201.4 ± 105.3
1.2 ± 0.7
921.8 ± 267.3
26.1 ± 7.2
180.7 ± 105.4
70.3 ± 16.9
1.5 ± 0.4
3027.6 ± 766.2
3.2
332.5 ± 79.0
1.8 ± 0.3
21882.5 ± 9422.8
23.7
7.2

 T_{max} = time to reach C_{max}

- administered alone
- concomitant administration
- CONCLUSIONS

Due to the depressant effects of both cannabidiol and opioids⁴, co-administration of these substances can suppress the central nervous system to dangerous levels, as well as increase the risk of opioid use disorder⁵. These results reveal the pharmacokinetic interactions between CBD and oxycodone that could manifest as interactions at a physiological level, which may extend to other prescription opioids.

FUNDING

Funding provided by NIDA. Grant: 1R01DA049470-01A1.

RESULTS

SUMMARY

When CBD and OXY are co-administered, CBD has a 1.3-fold lower exposure (AUC), while OXY has a 24-fold higher exposure (AUC), than when

• The metabolites, 70H-CBD, 7COOH-CBD, noroxycodone, and noroxymorphone have a 1.2-, 1.4-, 2.9-, and 1328-fold lower AUC, respectively with

In addition, a delayed absorption phase for both CBD and oxycodone, is evident in rats when dosed with both CBD and OXY REFERENCES

- Research International, 2020, 1-9.

- Journal of Addiction Medicine, 13(4), 287-294.

- 1147.

Oxycodone (OXY Only) Oxycodone (OXY+CBD) Noroxycodone (OXY Only) Noroxycodone (OXY+CBD) Oxymorphone (OXY Only) Noroxymorphone (OXY Only) Noroxymorphone (OXY+CBD) concomitant dose of

Figure 2: Mean plasma-concentration time profiles of OXY, noroxycodone, oxymorphone, and noroxymorphone after a single oral dose of OXY (1.4 mg/kg) or a single oral OXY (1.4 mg/kg) and CBD (25 mg/kg)

Table 2: Pharmacokinetic parameters of oxycodone after single oral dose of OXY (1.4 mg/kg) alone and concomitant with CBD (25 mg/kg) in male Sprague-Dawley Rats^a

OXY Alone	OXY + CBD
5.9 ± 4.7	14.8 ± 4.8
0.2 ± 0.1	2.9 ± 3.5
25.2 ± 5.3	604.0 ± 646.7
56.9 ± 11.9	4.7 ± 3.4
254.3 ± 141.6	141.5 ± 55.0
23.9 ± 14.1	8.5 ± 2.3
0.3 ± 0.1	0.3 ± 0.1
859.8 ± 510.0	289.2 ± 349.7
34.1	0.48
6.2 ± 2.2	3.2 ± 0.4
0.3 ± 0.1	0.2 ± 0.0
398.3 ± 452.1	0.3 ± 0.2
15.8	0.0005

Vázquez, M., Guevara, N., Maldonado, C., Cáceres Guido, P., & Schaiquevich, P. (2020). BioMed

Mlost, J., Bryk, M., & Starowicz, K. (2020). International journal of molecular sciences, 21(22), 8870. 3. Balachandran, P., Elsohly, M., & Hill, K. P. (2021). Journal of general internal medicine, 36(7), 2074–2084. 4. Rogers, A.H., Bakhshaie, J., Buckner, J.D., Orr, M.F., Paulus, D.J., Ditre, J.W., & Zvolensky, M.J. (2019).

Olfson, M., Wall, M.M., Liu, S.M., & Blanco, C. (2018). The American Journal of Psychiatry, 175(1), 47-53. 6. Lorenzetti, V., Solowij, N. & Yücel, M. (2015). *Biol. Psychiatry*, 79, 17-31.

7. Cohen, K., Weizman, A., & Weinstein, A. (2019). Clinical Pharmacology & Therapeutics, 105(5), 1129-