

Introduction

The recreational and medicinal use of cannabis is increasing among individuals with HIV due to growing reports of its potential to treat and manage symptoms of HIV/AIDS.

Objectives

This review identified and evaluated recent studies assessing the association between marijuana use and HIV outcomes.

Methods

- We conducted a systematic literature review with reporting according to PRISMA guidelines.
- The following databases were searched: Web of Science, Embase, PubMed, and the Cochrane library; using the following inclusion criteria: English language, USAbased study dated between May 2016 – December 2020.
- For quality evaluation we used the ROBINS-I tool for observational studies.

Results

- 28 studies met inclusion criteria including 3 systematic reviews with meta-analysis, 3 narrative reviews, and 22 observational studies (Figure 1).
- For observational studies, outcomes were adherence (7 of 22), viral suppression (10 of 22), and pain (5 of 22); Table 1.
- 12 studies examining adherence and viral suppression were rated low quality, while no studies were rated moderate or high quality (Table 1).
- Some studies revealed a high prevalence of marijuana use among people living with HIV/AIDS (from 28% to 77%), especially in adolescents and young adults (Table 2).

Identification

Screening

Eligibility

Included

Stud

Gros Morg

Kipp Sinh

Vidot

Okaf

Man Zhan Merli

Deep

Lee Slaw

MEDICAL MARIJUANA USE IN HIV/AIDS: REVIEW OF THE LITERATURE

Aimalohi Okpeku¹; Amie Goodin, PhD, MPP¹,² ¹ Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL ² Center for Drug Evaluation & Safety, University of Florida, Gainesville, FL

Table 1: Observational Studies - Outcomes Assessed and Risk of Bias

y	Outcome assessed	Findings	Assessment of Bias
s et al. 2016	Adherence assessment	Participants engaged in daily marijuana use were least likely to be adherent	
an et al. 2016	Adherence, linkage to care, retention in care and viral suppression.	Heavy marijuana users were more likely to be unaware of their HIV seropositive status	
et al. 2017	Adherence	Indicated marijuana use was associated with a 37% chance of missing their next medical appointment	
a et al. 2017	Adherence, viral load suppression	No association between marijuana use and adherence	
t et al. 2017	Adherence assessment	No association between marijuana use and adherence	
or et al.2017	Adherence & viral suppression	No statistically significant association between CD4+ cell count and detectable HIV viral load and prevalence of marijuana use	
nes et al.2017	Adherence	Moderate/heavy marijuana use was not significantly correlated with level of adherence	
g,Y et al. 2018	Adherence	Marijuana use predicted suboptimal adherence	
n et al.2019	VL suppression & pain	VL suppression this suggests that the subset of patients using cannabis are more likely to have lapsed adherence.	
ika et al. 2020	Viral suppression	No statistically significant association between HIV viral load and marijuana use	
IT, et al. 2020	VL suppression	No statistically significant association between marijuana use and viral suppression	
ek, et al. 2020	VL suppression	No statistically significant association between HIV viral load and marijuana use	
Color K	ev for Rating of Assess	sment of Bias: Not assessable Low Moderate Serious Critical	

Follow us on Twitter @UFCoDES

ole 2: Prevalence of marijuana use			
hor/Year	Findings		
narel et al. 6	el et al. 27.5% marijuana use weekly or more in adolescent and young adults living with HIV in a cohort of 2105 patients		
tzler et al. 7	Use of Cannabis among PLHIV reported highest use at 31% compare to 19% for alcohol, 13% for methamphetamine, 11% for cocaine, and 4% for opioid		
tzler et al. 7	et al. Study findings included 49% of cannabis users screened positive for Cannabis use disorder, greater CUD prevalence among PLWH.		
for et al. 7	Describes higher utilization, and frequency of use of marijuana among HIV positive as compared to HIV(–) ir a cohort study.		
vson-Rose I. 2017	In a cohort study, sample size (N=168) highest prevalence use 52.4% marijuana compared to other substances among HIV participants		
au, S. et al. 7	In a nationally representative sample of HIV infected and uninfected, 77% of HIV-infected adults reported marijuana use compared to 44.5% of uninfected participants		
ler, N. et al. 8	Cannabis was the most used substance (N = 311, 39.4%) among HIV cohort study		
ek, L.R. et 2018	Reports finding in nationally representative sample of 626 PLWH, 34.9% were past-year users of cannabis regardless of frequency, while 26.9% were non-daily users and 8.0% used cannabis daily		

Discussion

- The studies showed few significant associations between medical marijuana and HIV related outcomes.
- Ratings of risk of bias for all non-randomized studies ranged from serious risk of bias to critical risk of bias.

Limitations

- The studies do not consistently investigate cannabis as either a therapeutic agent or as a safety concern for PLWH.
- Measures of marijuana exposure were self-
- reported for frequency of use, with no information regarding route of administration, source, quantity, and potency in most studies.
- The ROBINS-I tool is not useful for assessing bias in cross sectional studies.

Conclusions

Not enough evidence to support marijuana use for improving adherence or for viral suppression as an effective treatment option for HIV/AIDS. This review suggests the need for high-quality research measurements in the assessment of marijuana use in HIV.

References (other):

- Dawson-Rose, C., Draughon, J. E. & Lum, P. J. (2017). Prevalence of substance use in an HIV primary care safety net clinic: a call for screening. Journal of the Association of Nurses in AIDS Care, 28(2), 238-249.
- Hartzler, B., Dombrowski, . & Donovan, D. M (2017). Prevalence and predictors of substance use disorders among HIV care enrollees in the United States. AIDS and Behavior, 21(4), 1138-1148
- Kipp AM, Rebeiro PF, Turner M, Bebawy S, et al. Daily Marijuana Use is Associated with Missed Clinic Appointments Among HIV-Infected Persons Engaged in HIV Care. AIDS Behav. 2017;21(7):1996-2004
- Okafor CN, Cook RL, Chen X, et al. Trajectories of Marijuana Use among HIV-seropositive and HIV-seronegative MSM in the Multicenter AIDS Cohort Study (MACS), 1984-2013. AIDS Behav. 2017;21(4):1091-104.
- Shiau, S., Arpadi, S. M., Yin, M. T., & Martins, S. S. (2017). Patterns of drug use and HIV infection among adults in a nationally representative sample. Addictive behaviors, 68, 39-44.

College of Pharmacy UNIVERSITY of FLORIDA