

Introduction

ATLANTIC

UNIVERSITY

- The legalization of cannabis has increased cannabis use while decreasing public perceptions of its health associated risks. The increase in telehealth services has increased the availability and accessibility of treatment for those diagnosed with cannabis use disorder (CUD).
- Although adult CUD has increased nationally, treatment engagement for CUD remains exceedingly low.
- In 2021, telehealth became more convenient and affordable for mental health facilities and SUD treatment institutions, so much that its availability increased by 77% in mental health treatment, and 143% in SUD treatment.
- This study sought to understand factors associated with telehealth service use among a sample of participants diagnosed with CUD over the past year.
- Understanding factors associated with telehealth service use in this population may help increase treatment accessibility and prevent long term consequences of untreated cannabis use disorder (CUD).

Andersen's Behavioral Model

- The model states that healthcare utilization is a function of three categories of factors-
- <u>Predisposing factors:</u> Characteristics of individuals including demographic variables, social structure, and health benefits that incline them toward or away from service use. Examples are age, sex, education, ethnicity, marital status, employment, attitudes and values.
- Enabling factors: Conditions that can impede or facilitate use of health services. Conditions can be logistical or personal resources for example having insurance, a supportive family, or living in an area with enough healthcare providers.
- Need factors: The evaluated or perceived need for health care. This related to how sick an individual is, but more so how much they believe they require care. These factors measure the severity of the disorder and their symptoms, in conjunction with comorbid conditions.

Methods

- Data were used from the 2023 National Survey of Drug Use and Health. Participants were at least 12 years old and had been diagnosed with cannabis use disorder within the last year.
- A binary hierarchical logistic regression was used to determine the impact of various factors (informed by Andersen's Behavioral Model) on past-year telehealth use. Predictors included predisposing factors, enabling factors, and need factors.

Barriers and Enablers of Telehealth Services for Cannabis Use Disorder: A National Survey Analysis Authors: Alan Kunz-Lomelin, Yiota Kitsantas, Xingquan Zhu, Nyla Searles, Tabatha Spinks, & Mirella Balas

Demographics

Table 1. Demographic	s (n = 3,606)		
Variable	Category	Ν	Percent
Sex	Male	1831	50.8
	Female	1775	49.2
Race/Ethnicity	NH White	1904	52.8
	NH Black	505	14
	Hispanic	746	20.7
	Multiracial	275	7.6
	Other	176	4.9
Education	No Enrolled	2437	67.6
	Going to School	1017	28.2
Age Group	12-17	491	13.6
	18-25	1570	43.5
	26-34	720	20
	35+	825	22.9
Household Income	<\$20k	805	22.3
	\$20-49k	1166	32.3
	\$50-74k	529	14.7
	\$75k+	1106	30.7
Government			
Assistance	No	2437	67.6
	Yes	1169	32.4
Health Insurance	Public	1520	42.2
	Private	1434	39.8
	None/Other	652	18.1
Metro Status	Large Metro	1582	43.9
	Small Metro	1399	38.8
	Non-Metro	625	17.3
Past Year Alcohol Use	No	2458	68.2
	Yes	1148	31.8
Telehealth Use	No	2110	58.5
	Yes	1433	39.8
Variable	Mean (SD)		
Psychological Distress	15.33 (6.05)		
Overall Health	2.68 (0.91)		

Table 2. Hierarchical Logistic Regression					
	Predictor	OR (95% CI)	p-value		
Predisposing	Female	1.97 (1.36-2.85)	0.001		
	NH-Black	1.63 (0.83-3.21)	0.15		
	Hispanic	1.57 (1.01-2.43)	0.045		
	Multiracial	1.48 (0.71-3.08)	0.287		
	Other	-0.30 (0.11-0.77)	0.014		
	Enrolled in School	-0.65 (0.37-1.12)	0.115		
	26 to 34 years old	1.29 (0.81-2.07)	0.274		
	35 years or older	1.80 (1.08-3.00)	0.025		
Enabling	\$20,000-\$49,999	1.17 (0.73-1.87)	0.501		
	\$50,000-\$74,000	1.26 (0.73-2.18)	0.401		
	\$75,000 or above	1.38 (0.71-2.70)	0.335		
	Government Assistance	1.16 (0.67-2.00)	0.593		
	Public insurance	2.04 (1.21-3.43)	0.009		
	Private insurance	1.81 (1.01-3.26)	0.046		
	Large Metro	1.30 (0.80-2.13)	0.282		
	Small Metro	1.45 (0.92-2.29)	0.104		
Need	Psych Distress	1.04 (1.00-1.07)	0.048		
	Overall Health	1.20 (1.01-1.43)	0.041		
	AUD Past Year	-0.91 (0.62-1.34)	0.623		

Conclusion and Implications

- treatment access.
- treatment adherence.

Results

• Practice Implications: Utilize factors like gender, race, and insurance to predict likelihood of telehealth usage and implement strategies to increase engagement in treatment among those that are less likely to use telehealth • Policy Implications: Findings support expanding public insurance and digital access to improve equity in telehealth use. Policies can target support for groups that are less likely to engage in telehealth, which will improve CUD

• Research Implications: This study creates a path to understanding why certain groups are more or less likely to use telehealth. Future studies could explore how telehealth impacts long-term CUD outcomes like relapse or

• There are key characteristics of telehealth service use that Andersen's model can help identify and which carry implications for the treatment of cannabis use disorder. These findings can help design implementation efforts that can increase accessibility of services and improve the long-term health outcomes of those diagnosed with cannabis use disorder.